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A method is presented to improve the description of electron correlation in configuration
interaction (CI) calculations. In this method, the standard CI expansion ψ is multiplied by a
correlation function φ = exp (F) with
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With this correlation function, the total wavefunction Ψ = φψ exhibits the right behavior
when two electrons coalesce while F vanishes for large interelectronic distances. The correla-
tion function is implemented using the methodology of similarity-transformed Hamilton-
ians and is applied to two-electron systems. A generalization to many-electron systems is
indicated. The new method yields more accurate results than standard CI calculations of the
energy and interelectronic distance of the He atom. The H2 molecule was chosen to study
the long-range behavior of the correlation function.
Keywords: Hamiltonian; Gaussian; Wavefunctions; Configuration interaction; Correlation
functions; Ab initio calculations.

In nonrelativistic quantum chemistry, much effort has been put forth to
compute approximate solutions of the time-independent Schrödinger equa-
tion $H EΨ Ψ= . The convergence of the calculation of accurate approximate
solutions of the Hamiltonian is often hampered by electron correlation, a
phenomenon related to the instantaneous repulsions among the electrons.
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Electron correlation cannot be taken into account by independent-particle
models (e.g., Hartree–Fock) where instantaneous repulsions are neglected.
Although such models may yield acceptable results on many occasions, cor-
relation effects need to be taken into account for various purposes, for ex-
ample for the description of bond dissociation and dispersion forces. In the
present study, an attempt is undertaken to enhance the description of elec-
tron correlation in order to improve the convergence and accuracy of con-
figuration interaction (CI) calculations.

The exact nonrelativistic wavefunction satisfies Kato’s correlation cusp
condition1
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where “av” stands for spherical averaging. The description of the correla-
tion cusp and the amount of electron correlation in CI calculations can be
significantly enhanced if we add a correlation function to the wave-
function, that is, if we write the wavefunction as Ψ = φψ, where ψ is a stan-
dard CI-type expansion (i.e., a linear combination of orbital products) and φ
is a correlation function2–4. Since ∂ψ ∂/ rij = 0, it follows that φ should satisfy
the cusp condition. This fact can be exploited to design approriate correla-
tion functions. Furthermore, φ should remain finite when rij approaches
infinity in order not to corrupt the standard CI-type expansion ψ. In the
present study, therefore, we have decided to investigate the correlation
function φ = exp F with
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Note that φ satisfies the cusp condition when
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irrespective of ψ. Moreover, the correlation function approaches unity
when rij becomes large.
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In this paper, we shall present a method to implement the above de-
scribed correlation function using the transcorrelated method previously
developed by Boys and Handy5–12 and reviewed by one of us13,14 as well as
by Nooijen and Bartlett15. All of the formulae for the implementation are
derived for any number of electrons but the method has thus far been ap-
plied only to two-electron systems.

Our present work is closely related to the very recent work by Ten-no and
co-workers16–20. However, their method differs from ours since they use cor-
relation functions with

~
exp( ) ,G rij

m
m ij= −γ 2 (5)

that is, without the linear rij term. The Gaussian functions (5) do not satisfy
the correlation cusp. Rather, they are used to fit the Coulomb hole. One
motivation for the present work was to supplement the method of Ten-no
and co-workers by linear rij terms.

Calculations on the He atom were performed in large basis sets of Gaussi-
an atomic orbitals (AOs) to assess the quality of the description of short-
range correlation by the new wavefunctions. The H2 molecule (with differ-
ent internuclear distances) was used as a model system to investigate the
long-range behavior of the correlation function and to optimize the param-
eter γ, which determines the range of correlations. We furthermore indicate
how to calculate expectation values using the new wavefunctions and, fi-
nally, we investigate the convergence behavior of the new method in com-
parison with traditional CI.

THEORY

Similarity-Transformed Hamiltonians

In atomic units, the molecular electronic Hamiltonian is written as

$ $ ,H V h
ri

iji ji

= + +
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where Vnuc is the nuclear repulsion energy
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$hi is the one-electron Hamiltonian

$h
Z

ri i
K

iKK

= − −∑1
2

∆ (8)

and rij = |ri – rj| is the interelectronic distance. The sums over i and j run
over the electrons and the sums over K and L run over the nuclei in the
molecule.

We write the molecular electronic wavefunction as

Ψ = = = = − =−

<
∑φψ ψ φ ψ ψR R L L ij
i j

F F F fexp( ) exp( ) , ,1 (9)

where fij is a symmetric two-electron function (geminal), which in the
present work is chosen as a linear combination of Gaussian-damped interelec-
tronic distances
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The cm and γm are adjustable parameters.
We multiply the molecular electronic Schrödinger equation $H EΨ Ψ=

from the left by the operator exp (–F) to obtain

exp( ) $ exp( ) ,− =F H F ER Rψ ψ (11)

which may be regarded as a Schrödinger equation with an effective, non-
Hermitian similarity-transformed Hamiltonian (STH)

$ exp( ) $ exp( ) ,H F H FF = − (12)

which corresponds to the Hirschfelder Hamiltonian2
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The nested-commutator expansion of $H F yields

$ $ [ $ , ] [[ $ , ], ].H H H F H F FF = + + 1
2

(14)

[ $ , ]H F constitutes the two-electron operator
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while the double commutator gives rise to the three-electron operator
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Since [[[ $ ,H F],F],F] = 0, there are no terms beyond the double commutator in
the nested-commutator expansion.

The similarity-transformed Hamiltonian has right and left eigenfunctions
ψR and ψL, respectively. In particular,

$ , ( $ ) †H E H EF
R R

F
L Lψ ψ ψ ψ= = (17)

with
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Finally, the expectation value of an operator $O is computed according to
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Two-Electron Systems

For a system with only two electrons, we obtain the following expression
for the single commutator:
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with
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Similarly, for the double commutator, we obtain
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If we restrict the sum in Eq. (10) to only one term with γ1 = 0, the commu-
tators reduce to the expressions
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and the similarity-transformed Hamiltonian in this special case becomes
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In Eq. (28), the Coulomb singularity in (1 – 2c1)/r12 vanishes when c = 1/2.
Thus, for this value of c1, a much improved convergence rate is expected for
the CI expansion of $H F in comparison with $H.

Many-Electron Systems

It was shown above that three-electron integrals are the most involved
integrals to be computed for n-electron systems. Still, these integrals can be
computationally quite demanding, especially in the multicenter case.
Ten-no and co-workers16–20 have derived methods to compute the three-
electron integrals in Eq. (16) by means of resolution-of-identity approxima-
tions (closure approximations) to reduce the cost of the calculation.

These resolution-of-identity approximations should also be invoked in all
of the formulae that occur with the correlation functions of the present
work. All of the two-electron integrals are available to do so.

COMPUTATIONAL DETAILS

The two-electron integrals required for the present study were implemented
into the DALTON program21. This implementation is described in detail
elsewhere22.

The 19s16p14d12f10g8h6i4k Gaussian basis for He was derived from the
17s set of Huzinaga and Miguel23,24 in two steps. First, functions of angular
symmetry l were added whose exponents were obtained by multiplying
the respective number of smallest exponents of the 17s set with the factor
(2l + 1)/3. Second, two diffuse s functions were added with exponents 0.043
and 0.0215 a0

2− .
The calculations on H2 were carried out in the 5s4p subset of the

aug-cc-pVQZ basis24,25.

RESULTS

Figure 1 as well as Tables I–III demonstrate that the STH method yields a
more accurate total energy and interelectronic distance than standard CI
calculations of the He atom ground state. Furthermore, the error decreases
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much faster with the STH method than with standard CI when the number
of basis functions is increased. More is gained by the STH method in a
larger basis. When only s-type functions are used, the standard CI method
appears to be superior in accuracy to the STH. This might be due to the
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FIG. 1
Absolute error (in Eh) in the He ground-state energy of the standard CI expansion (�) and
of the similarity-transformed Hamiltonian of Eq. (28) with c1 = 1/2 (● ) as a function of the ba-
sis set
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TABLE I
He atom ground-state energy, obtained from calculations with the similarity-transformed
Hamiltonian of Eq. (28) with c1 = 1/2, in comparison with standard CI calculations

Basis seta E H EF( $ ) / h δ µ( $ ) /H EF b
h E H E( $ ) / h δ /µ( $ )H Eb

h

19s –3.010 772 36 –107 048 –2.879 027 61 24 697

19s16p –2.904 831 30 –1107 –2.900 513 53 3211

19s16p14d –2.904 061 41 –337 –2.902 762 12 963

19s16p14d12f –2.903 805 89 –82 –2.903 314 21 410

19s16p14d12f10g –2.903 751 43 –27 –2.903 509 63 215

19s16p14d12f10g8h –2.903 735 20 –11 –2.903 594 60 130

19s16p14d12f10g8h6i –2.903 729 33 –5 –2.903 634 64 90

19s16p14d12f10g8h6i4k –2.903 727 45 –3 –2.903 647 06 77

a Subsets of the 19s16p14d12f10g8h6i4k basis. b Error with respect to the exact value of E =
–2.903 724 377 Eh from ref.26 See also ref.27
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TABLE III
He atom ground-state kinetic energy, potential energy, virial, and expectation values of r12,
obtained from calculations with the similarity-transformed Hamiltonian of Eq. (28) with
c1 = 1/2

Basis seta 〈 〉$T Eh 〈 〉V Eh − 〈 〉 〈 〉1
2

V T$ 〈 〉r a12 0

19s 2.747 273 –5.758 046 1.047 956 1.386 425

19s16p 2.902 073 –5.806 904 1.000 475 1.416 121

19s16p14d 2.901 593 –5.805 654 1.000 425 1.421 608

19s16p14d12f 2.902 853 –5.806 659 1.000 164 1.421 953

19s16p14d12f10g 2.903 273 –5.807 025 1.000 082 1.422 036

19s16p14d12f10g8h 2.903 454 –5.807 189 1.000 048 1.422 060

19s16p14d12f10g8h6i 2.903 538 –5.807 268 1.000 033 1.422 068

19s16p14d12f10g8h6i4k 2.903 567 –5.807 294 1.000 028 1.422 071

∞b 2.903 724 –5.807 449 1.000 000 1.422 070

a Cf. Table I. b From ref.28

TABLE II
He atom ground-state kinetic energy, potential energy, virial, and expectation values of r12,
obtained from standard CI calculations

Basis seta 〈 〉$T Eh 〈 〉V Eh − 〈 〉 〈 〉1
2

V T$ 〈 〉r a12 0

19s 2.879 027 –5.758 055 1.000 000 1.387 999

19s16p 2.900 513 –5.801 026 1.000 000 1.424 184

19s16p14d 2.902 761 –5.805 523 1.000 000 1.422 838

19s16p14d12f 2.903 313 –5.806 627 1.000 000 1.422 413

19s16p14d12f10g 2.903 508 –5.807 017 1.000 000 1.422 254

19s16p14d12f10g8h 2.903 595 –5.807 189 1.000 000 1.422 182

19s16p14d12f10g8h6i 2.903 623 –5.807 257 1.000 002 1.422 149

19s16p14d12f10g8h6i4k 2.903 614 –5.807 261 1.000 006 1.422 141

∞b 2.903 724 –5.807 449 1.000 000 1.422 070

a Cf. Table I. b From ref.28



choice of basis functions, which were optimized for standard CI calcula-
tions and not for the similarity-transformed Hamiltonian. However, al-
though the total energy is very accurate, the individual STH expectation
values for kinetic and potential energy are less accurate than their counter-
parts from standard CI calculations (Tables II, III). Again, this might be due
to the choice of basis set, which is nearly optimal for standard CI calcula-
tions. A better basis set for the STH calculations could perhaps be generated
by scaling all basis-set exponents by a certain factor, but this has not yet
been attempted.

When the quality of the calculation is tested as a function of γ, it is ob-
served that the error is increased for intermediate values of γ (Table IV and
Fig. 2). The reason for the deterioriation is unknown. We conclude that γ
should be kept small to describe short-range correlation effectively.

On the other hand, the calculations of the stretched H2 molecule indicate
that γ should be sufficiently large to maintain convergence in the calcula-
tion when the interelectronic distance is very long. Because of this contro-
versy, it is impossible to make conclusive statements about the optimal
value of parameter γ. The choice of γ obviously depends on the mutual dis-
tances between the electrons in the system. An STH calculation of a large
n-electron molecule should perhaps be preceded by an inexpensive CI or
even Hartree–Fock calculation in a small basis to estimate the average inter-
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FIG. 2
He atom ground-state energy obtained from calculations with the similarity-transformed
Hamiltonian of Eq. (12) in the 19s16p14d12f10g8h6i4k basis with M = 1 and c1 = 1/2, as a
function of the damping parameter γ1. The horizontal line indicates the exact energy
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FIG. 3
Number of iterations needed to solve the CI equations for the H2 molecule as a function of the
damping parameter γ. Results are shown for internuclear H–H distances of 5.0 (◆ ), 10.0 (�),
100.0 (▲), and 1000.0 (�) a0
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TABLE IV
He atom ground-state energy obtained from calculations with the similarity-transformed
Hamiltonian of Eq. (12) in the 19s16p14d12f10g8h6i4k basis with M = 1 and c1 = 1/2

log ( )γ1 –E/Eh

–∞ –2.903 727
–3.000 00 –2.903 727
–2.000 00 –2.903 727
–1.000 00 –2.903 728
–0.500 00 –2.903 732
0.000 00 –2.903 752
0.250 00 –2.903 782
0.500 00 –2.903 820
0.625 00 –2.903 841
0.750 00 –2.903 859
0.812 50 –2.903 864
0.843 75 –2.903 866
0.875 00 –2.903 865
0.937 50 –2.903 861
1.000 00 –2.903 853
1.500 00 –2.903 761
2.000 00 –2.903 692
3.000 00 –2.903 650
4.000 00 –2.903 647
∞ –2.903 647



electronic distance 〈r12〉 . The damping parameters γm could perhaps be cho-
sen accordingly.

The optimal value of γ seems to be a certain threshold value γthr, which is
small but just large enough so that the calculation still converges. It is ob-
served from Fig. 3 that the threshold to convergence is γthr ∝ 〈 r12〉 .

Finally, we note that Ten-no and co-workers16–20 have developed a useful
fitting procedure for obtaining the γm in the expansion (2) in terms of their
correlation functions given in Eq. (5). It would therefore be interesting to
see how the same procedure would perform with our correlation functions
given in Eq. (3).

CONCLUSIONS

The newly developed STH method outshines the standard CI method in the
description of the He atom. The error in the total energy is smaller and de-
creases much faster when the number of basis functions is increased. It has
been shown that the STH method is also successful in calculating expecta-
tion values (e.g., 〈r12〉).

The STH method with the here presented correlation function is also ca-
pable of describing systems with large interelectronic distances, provided
that the damping parameter γ is large enough. In future work, the method
should be extended to many-electron systems using closure approximations
in order to apply this and similar techniques to general molecules.
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